Parametric Distributions of Complex Survey Data under Informative Probability Sampling

نویسندگان

  • Danny Pfeffermann
  • Abba M. Krieger
  • Yosef Rinott
  • YOSEF RINOTT
چکیده

The sample distribution is defined as the distribution of the sample measurements given the selected sample. Under informative sampling, this distribution is different from the corresponding population distribution, although for several examples the two distributions are shown to be in the same family and only differ in some or all the parameters. A general approach of approximating the marginal sample distribution for a given population distribution and first order sample selection probabilities is discussed and illustrated. Theoretical and simulation results indicate that under common sampling methods of selection with unequal probabilities, when the population measurements are independently drawn from some distribution (superpopulation), the sample measurements are asymptotically independent as the population size increases. This asymptotic independence combined with the approximation of the marginal sample distribution permits the use of standard methods such as direct likelihood inference or residual analysis for inference on the population distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Approximate Bayesian Inference for Outlier Detection under Informative Sampling

Government surveys of business establishments receive a large volume of submissions where a small subset contain errors. Analysts need a fast-computing algorithm to flag this subset due to a short time window between collection and reporting. We offer a computationallyscalable optimization method based on non-parametric mixtures of hierarchical Dirichlet processes that allows discovery of multi...

متن کامل

A risk adjusted self-starting Bernoulli CUSUM control chart with dynamic probability control limits

Usually, in monitoring schemes the nominal value of the process parameter is assumed known. However, this assumption is violated owing to costly sampling and lack of data particularly in healthcare systems. On the other hand, applying a fixed control limit for the risk-adjusted Bernoulli chart causes to a variable in-control average run length performance for patient populations with dissimilar...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive...

متن کامل

Empirical Likelihood Estimation for Samples with Nonignorable Nonresponse

Nonresponse is very common in survey sampling. Nonignorable nonresponse, a response mechanism in which the response probability of a survey variable Y depends directly on the value of Y regardless of whether Y is observed or not, is the most difficult type of nonresponse to handle. The population mean estimators ignoring the nonrespondents typically have heavy biases. This paper studies an empi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003